منابع مشابه
Confluence Reduction for Markov Automata
Article history: Received 7 July 2015 Accepted 12 January 2016 Available online 19 January 2016
متن کاملModelling, Reduction and Analysis of Markov Automata
Markov automata (MA) constitute an expressive continuoustime compositional modelling formalism. They appear as semantic backbones for engineering frameworks including dynamic fault trees, Generalised Stochastic Petri Nets, and AADL. Their expressive power has thus far precluded them from effective analysis by probabilistic (and statistical) model checkers, stochastic game solvers, or analysis t...
متن کاملConfluence Reduction for Probabilistic Systems
This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the technique, we introduce a method for detecting confluent transitions in the context of a probabilistic...
متن کاملConfluence Reduction for Probabilistic Systems (extended version)
This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the technique, we introduce a method for detecting confluent transitions in the context of a probabilistic...
متن کاملModelling, Reduction and Analysis of Markov Automata (extended version)
Markov automata (MA) constitute an expressive continuoustime compositional modelling formalism. They appear as semantic backbones for engineering frameworks including dynamic fault trees, Generalised Stochastic Petri Nets, and AADL. Their expressive power has thus far precluded them from effective analysis by probabilistic (and statistical) model checkers, stochastic game solvers, or analysis t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2016
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2016.01.017